DCS Rozproszone Systemy Automatyki Wykład 7

Adam Ratajczak

Pracownia Automatyki, Modelowania i Mechatroniki Katedra Automatyki, Mechatroniki i Systemów Sterowania Wydział Elektroniki Politechnika Wrocławska

Copyright © 2022 Adam Ratajczak¹

¹ Niniejszy dokument zawiera materiały do wykładu z przedmiotu Rozproszone Systemy Automatyki. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może być kopiowany wyłącznie w całości, razem ze stroną tytułową.

DCS - Wykład 7

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
oo●ooo	00	0000	000	0000000000		00000	00
Wstę	Р						

Wstęp	051	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
ooo●oo	00	0000	000	0000000000		00000	00
Wstę	Р						

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
oooo●o	00	0000	000	0000000000		00000	00
Wstę	Р						

REQUEST PACKET INTERVAL (RPI)

Czas pomiędzy kolejnymi pakietami wysyłanymi pomiędzy sterownikiem a kasetą wejść/wyjść rozproszonych.

Wstęp	0 SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
ooooo●	00	0000	000	0000000000		00000	00
Wstę	Р						

Rodzaje połączenia

- half-duplex
- full-duplex

Transport

Network

Data Link

Physical

Network Data Link

Transport

Physical

Medium

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	●000	000	0000000000		00000	00
MAC							

MEDIUM ACCESS CONTROL (MAC)

Sposób dostępu do medium komunikacyjnego (przewodu), który jest współdzelony przez wiele urządzeń ze względów oszczędnościowych. Metody:

- CSMA/CD
- token-passing

MAC Address – 48-bitowy adres fizyczny urządzenia sieciowego, najczęściej zapisany w kodzie szesnastkowym (6x2 cyfry szesnastkowe)

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	○●○○	000	0000000000		00000	00
MAC							

CSMA/CD

Carrier Sense, Multiple Access/Collision Detection Każdy węzeł sieci nasłuchuje czy medium nie jest aktualnie zajęte przez inny węzeł (Carrier Sense). Jeśli jest zajęte, węzeł odczekuje pewien czas. Jeśli dwa węzły zaczną nadawać jednocześnie (Multiple Access) powstaje kolizja i wszystkie ramki muszą zostać zniszczone. Węzły potrafią wykryć kolizję (Collision Detection) poprzez monitorowanie medium podczas wysyłania. Jeśli zostanie wykryta kolizja jest nadawana sekwencja zakłócająca (jam sequence).

Wstęp	0SI	MAC	IP	U rzą dzenia	RT-Ethernet	Redundancja	PoE
000000	00	00●0	000	0000000000		00000	00
MAC							

$\mathrm{CSMA}/\mathrm{CD}$ C.d.

Backoff algorithm

W przypadku gdy nastąpi kolizja urządzenie nadające stosuje algorytm backoff w celu wyznaczenia czasu oczekiwania.

$$n:=0, \; k:=0, \; r:=0$$
 jeśli wystąpiła kolizja:

 ${f 2}$ jeśli n>16 błąd transmisji, powiadom warstwę wyższą

3 jeśli
$$n \leq 16$$
 weź $k = \min(n, 10)$

4 wylosuj r ze zbioru
$$\{0, 1, 2, 4, \dots, 2^k\}$$

5 odczekaj $r \times \text{slot}$ time

Wstęp	051	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	000●	000	0000000000		00000	00
MAC							

TOKEN-PASSING

Alternatywą do dostępu CSMA/CD jest metoda przekazywania tokenu. Tylko urządzenie posiadające w danym momencie token może rozpocząć nadawanie tylko jednej wiadomości. Długość wiadomości jest zwykle ograniczona od góry.

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	●00	0000000000		00000	00
Adre	s IP						

```
ADRES IP
  IPv4
     Długość adresu 32bity (4bajty)
                        ddd . ddd . ddd . ddd
    gdzie 0 \leq \mathbf{ddd} \leq 255, a każdy znak d jest cyfrą dziesiętną.

    IPv6 Długość 128bitów (16bajtów)

        XXXX : XXXX
    gdzie każdy znak x to cyfra szesnastkowa reprezentująca 4
     bity.
```

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	○●○	0000000000		00000	00
Adre	s IP						

PODSIEĆ, MASKA PODSIECI Dysponujemy następującym przykładowym adresem IP 192.168.22.17 Jaki jest adres sieci, dla maski

255.255.255.0

Wstęp	0 SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	00●	000000000		00000	00
ADRE	s IP						

Podsieć, maska podsieci
Adres IP
192.168. 22. 17 11000000.10101000.00010110.00010001
Maska podsieci
255.255.255. 0 111111111111111111111111111111
Podsieć
192.168.22.0 11000000.10101000.00010110.00000000
Broadcast
192.168. 22.255 11000000.10101000.00010110.11111111
Host Min.
192.168.22.1 11000000.10101000.00010110.00000001
Host Max.
192.168. 22.254 11000000.10101000.00010110.11111110
Liczba hostów: $2^8 - 2 = 256 - 2 = 254$

URZĄDZENIA SIECIOWE

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	o●oooooooo		00000	00
Huby							

Własności

Urządzenie typu Hub jest niezbędne jeśli wymagana jest topologia typu gwiazda, gdy trzeba połączyć ze sobą więcej niż dwa urządzenia. Wszystkie urządzenia wpięte do huba działają w jednej wspólnej domenie kolizyjnej (Collision Domain) Wymagania wg IEEE 802.3

- Odtworzenie sygnału (amplituda i symetria)
- Ponowna synchronizacja sygnałów, zapobieganie narastaniu przesunięć fazowych (retiming)
- Nadzór nad kolizjami
- Zwiększanie zasięgu sieci

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	oo●ooooooo		00000	00
Swite	CHE						

Własności

Switch (Switching hub, bridge) pracuje z zawartościami ramek ethernetowych

- dekodowanie i zapamiętywanie ramek
- rozdzielanie ramek do właściwych urządzeń
- testowanie spójności ramek

🛯 brak kolizji

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	○○○●○○○○○○		00000	00
SWITC	CHE						

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	○○○○●○○○○○		00000	00
SWITC	CHE						

FUNKCJE DODATKOWE Auto negocjacja Auto-MDIX Kontrola przepływu backpresure pause Fast Link Pulse (FLP), Normal Link Pulse (NLP)

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	○○○○○●○○○○		00000	00
Swite	CHE						

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	○○○○○○●○○		00000	00

URZĄDZENIA SIECIOWE

KIEDY HUB, KIEDY SWITCH

Problem	Rekomendacja
Niskie koszty	Hub
Zmniejszenie opóźnienia danych	Hub
Proste aplikacje	Hub
Praca przy 100Mbps	Switch
Praca Full-duplex	Switch
Auto negocjacja	Switch
Duże odległości	Switch
Praca Master/Slave	Hub i Switch
Protokoły Peer-to-Peer	Switch
Analiza sieci	Hub

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	○○○○○○○●○		00000	00

URZĄDZENIA SIECIOWE

ETHERNET I FAST ETHERNET

	Ethernet 802.3	FastEthernet 802.3u
Slot time	51.2 <i>µs</i>	5.12 <i>µs</i>
Interframe Gap	9.6 <i>µs</i>	0.96 <i>µs</i>
Attempt Limit	16 tries	16 tries
Backoff Limit	10 (exponent)	10 (exponent)
Jam Size	3.2 <i>µs</i>	0.32 <i>µs</i>
Max Frame Size	1214.4 μs	121.44 μs
Min Frame Size	6.4 <i>µs</i>	0.64 <i>µs</i>
Addres Size	4.8 <i>µs</i>	0.48 <i>µs</i>

 Wstęp
 OSI
 MAC
 IP
 Urządzenia
 RT-Ethernet
 Redundancja
 PoE

 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

URZĄDZENIA SIECIOWE

ETHERNET I FAST	ETHERNET		
Data Rate Wires Cable Connector Max Segment	10Base-T 10 Mbps 4 Cat.3 UTP RJ-45 100m	100Base-TX 100 Mbps 4 Cat.5 UTP RJ-45 100m	100Base-FX 100 Mbps 2 (fibers) 62.5/125 μm SC or ST 2km

Wstęp OSI MAC IP Urządzenia RT-Ethernet Redundancja PoE

REAL-TIME ETHERNET

REAL-TIME ETHERNET

tęp OSI MAC IP Urządzenia **RT-Ethernet Redundancja** 0000 00 0000 000000000 00**€00000000** 00000

REAL-TIME ETHERNET

KATEGORIE UKŁADÓW CZASU RZECZYWISTEGO HARD REAL-TIME (HRT) błędne działanie prowadzi do katastrofy. Błędy w układzie HRT prowadzą do obrażeń ludzi i uszkodzeń sprzętu. SOFT REAL-TIME (SRT) błędy w działaniu układów SRT nie prowadzą do utraty zdrowia lub mienia. Takie układy nie mogą być stosowane w układach bezpieczeństwa.

PoE

REAL-TIME ETHERNET

MAC

Typowe czasy cykli

Aplikacja Czujniki wolnozmienne (temp., ciśn.) Systemy sterowania napędami Systemy sterowania ruchem (roboty) Precyzyjne sterowanie ruchem Urządzenia szybkozmienne Dalmierze (detekcja uszkodzeń)

IP

Urzadzenia

RT-Ethernet

Typowy czas cyklu dziesiątki milisekund milisekudny setki mikrosekund dziesiątki mikrosekund mikrosekundy mikrosekundy

Redundancia

PoE

REAL-TIME ETHERNET

REAL-TIME ETHERNET

EtherNet/IP

IP oznacza Industrial Protocol Protokół stworzony przez

- CI (ControlNet Intenational)
- ODVA (Open DeviceNet Vendors Association)
- IEA (Industrial Ethernet Association)

Zbudowany w oparciu o standardy IEEE 802.3 i TCP/UDP/IP. Wykorzystuje protokół CIP (Control and Information Protocol) PoE

REAL-TIME ETHERNET

CONTROL AND INFORMATION PROTOCOL (CIP)

REAL-TIME ETHERNET

EtherCAT

EtherCAT (Ethernet for Control Automation Technology) stworzony przez firmę Beckhoff. Ethernet czasu rzeczywistego dla sterowania ruchem. Własności:

- Obsługa do 1000 I/O w 30µs w full-duplex
- Przewody miedziane lub światłowody
- Oparty o metody Master/Slave
- Może współdziałać ze standardowymi sieciami TCP/IP i przemysłowymi sieciami jak EtherNet/IP
- Dowolne topologie sieci w tym topologia bus

REAL-TIME ETHERNET

REAL-TIME ETHERNET

ETHERNET POWERLINK

- ETHERNET Powerlink jest protokołem HRT
- Czasy cyklu ok. 200µs
- Podział transmisji na sloty-czasowe
- Oparty o metody Master/Slave

REAL-TIME ETHERNET

Adam Ratajczak	DCS – Wykład 7	35 / 44

REAL-TIME ETHERNET

MAC

PROFINET

Zbudowany w oparciu o standardy IEEE 802.3 i TCP/UDP/IP

Urzadzenia

RT-Ethernet

0000000000000000

- Kompatybilny z PROFIBU-DP
- PROFInet V1 czas odpowiedzi 10-100ms
- PROFInet-SRT czasy cykli 5-10ms
- PROFInet-IRT (Isochronous RT) czas cyklu poniżej 1ms, jitter rzętu 1µs, deterministyczny

Redundancia

PoE

Wstęp OSI MAC IP Urządzenia **RT-Ethernet** Redundancja PoE

REAL-TIME ETHERNET

PROFINET-IRT PODZIAŁ KANAŁU

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	0000000000		●୦୦୦୦	00
Б							

REDUNDANCJA SIECI

Własności

- Zwiększenie prędkości przesyłu
- Bardzo szybki czas przywracania
- Dedykowane switche
- Stosunkowo drogi sprzęt
 - i okablowanie

REDUNDANCJA SIECI

Własności

- Standardowa prędkość przesyłu
- Standardowy czas przywracania
- Dedykowane switche (loop condition)
- Stosunkowo tanie wdrożenie

REDUNDANCJA SIECI

Protokoły do wdrażania redundacji sieci

MRP Media Redundancy Protocol

PRP Parallel Redundancy Protocol

STP Spanning Tree Protocol RSTP Rapid Spanning Tree Protocol

JetNet 4010

Redundancja sieci - przykład

Wstęp	0SI	MAC	IP	Urządzenia	RT-Ethernet	Redundancja	PoE
000000	00	0000	000	0000000000		00000	●0

POWER OVER ETHERNET

POWER OVER ETHERNET

DODATEK

Definicje

UNICAST połączenie jeden do jednego MULTICAST połączenie jeden do wielu BROADCAST połączenie jeden do wszystkich RPI Request Packet Interval MAC Medium Access Control IP Internet Protocol CSMA/CD Carrier Sense, Multiple Access/Collision Detection TCP Transmission Control Protocol UDP User Datagram Protocol OSI Open Systems Interconnect UTP Unshielded Twisted Pair

LITERATURA

Remote I/O Network Determinism D. Doggett, M. J. Palomino Schneider Electric Common Industrial Protocol (CIP) http://http://www.odva.org Industrial Ethernet Book http://www.iebmedia.com Control Network – Contemporary Controls http://www.ccontrols.com The Extension and Essentials Technical Supplement to the Control Network http://www.ccontrols.com

LITERATURA C.D.

Industrial Ethernet University

http://www.industrialethernetu.com/

IBM Knowledge Center

https://www.ibm.com/support/knowledgecenter/pl/